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In this paper, we propose a novel approach to achieve spectrum prediction, parameter fitting, inverse design, and
performance optimization for the plasmonic waveguide-coupled with cavities structure (PWCCS) based on ar-
tificial neural networks (ANNs). The Fano resonance and plasmon-induced transparency effect originated from
the PWCCS have been selected as illustrations to verify the effectiveness of ANNs. We use the genetic algorithm to
design the network architecture and select the hyperparameters for ANNs. Once ANNs are trained by using a
small sampling of the data generated by the Monte Carlo method, the transmission spectra predicted by the ANNs
are quite approximate to the simulated results. The physical mechanisms behind the phenomena are discussed
theoretically, and the uncertain parameters in the theoretical models are fitted by utilizing the trained ANNs.
More importantly, our results demonstrate that this model-driven method not only realizes the inverse design of
the PWCCS with high precision but also optimizes some critical performance metrics for the transmission spec-
trum. Compared with previous works, we construct a novel model-driven analysis method for the PWCCS that is
expected to have significant applications in the device design, performance optimization, variability analysis,
defect detection, theoretical modeling, optical interconnects, and so on. © 2019 Chinese Laser Press

https://doi.org/10.1364/PRJ.7.000368

1. INTRODUCTION

Owing to the unique properties of near-field enhancement ef-
fect and breaking the diffraction limit, the emergence of surface
plasmon polaritons (SPPs) has attracted a great deal of research
attention [1]. Until now, diversified plasmonic structures have
been proposed to excite and transmit the SPPs, such as meta-
material [2,3], dielectric gratings and metallic gratings [4,5],
metal-dielectric-metal (MDM) waveguides [6–9], graphene-
based waveguides [10,11], and hybrid waveguides [12–14].
In these structures, the plasmonic waveguide coupled with
cavities structure (PWCCS), which can be easily integrated into
plasmonic circuits, has attracted widespread attention because
it is at subwavelength scale, supports a relatively long propaga-
tion length for SPPs, and demands relatively simple fabrication
by using electron beam lithography and focused ion beam etch-
ing [14–16]. As for the simple PWCCSs, the physical mech-
anisms behind the phenomena are analyzed by utilizing some
theoretical models and classical methods such as coupled-mode
theory (CMT) and the transfer-matrix method (TMM)
[6–9,17]. Then theoretical models are constructed to predict

the transmission spectrum, determine structure parameters,
and optimize some critical metrics (transmittance and band-
width) [6–9]. However, for relatively complex PWCCSs with
a complicated waveguide and cavity structure, the physical
mechanism is hardly understood, and thus theoretical models
are difficult to construct [18,19]. And the absence of an
empirical relationship between the structure parameters and
electromagnetic responses often enforces utilization of a
time-consuming brute force search or evolutionary algorithms
to determine the shape, dimensions, and variability of the
device [20]. Obviously, an effective intelligence algorithm that
obtains reliable spectrum prediction, inverse design, and per-
formance optimization should be addressed in the design
and analysis of photonic devices.

For the complex PWCCSs, computing the electromagnetic
responses for all structure parameters via numerical simula-
tion methods usually requires tremendous computation time.
If the electromagnetic responses for all structure parameters
can be predicted by using a small sampling of simulation
results, the efficiency of design and analysis for complex
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PWCCSs will be improved. However, a simple and quick
solution to predict and evaluate the spectrum responses for
all structure parameters based on the partial simulation results
is still lacking. In addition, although inverse design and perfor-
mance optimization have been used to assist the design of mode
multiplexers [21], wavelength multiplexers [22], polarization
beam splitters [23], polarization rotators [24], power splitters
[25], and so on, few studies have been focused on PWCCSs.
Generally speaking, inverse design and performance optimiza-
tion problems are solved by using several optimization algo-
rithms, including gradient-based methods and gradient-free
methods. For the gradient-based methods, the topology opti-
mization solved by the adjoint method has been mostly
applied in designing linear optical devices [21,22,26]. Recently,
Hughes et al. have extended the traditional adjoint method
to model nonlinear devices in the frequency domain [27].
For the gradient-free methods, evolution algorithms (genetic
[24,28–30] and particle swarm [25]) and search algorithms
(nonlinear search method [23]) are representative methods
to design and optimize photonic devices. Among these optimi-
zation algorithms, the genetic algorithm (GA) is widely used
because of its effectiveness, simplicity, and intuitiveness, even
though it requires a lot of time to evolve, cross over, and mutate
[28]. For example, directional optical cloaking and a gold nano-
structure-based SPP sensor have been inversely designed by
using the (micro) GA integrated with the finite-difference
time-domain (FDTD) method [29,30]. Notably, these optimi-
zation algorithms usually optimize for some specific metrics,
and they rarely directly achieve the most suitable structure
parameters for a complete transmission spectrum in a wide
wavelength range. In recent years, artificial neural networks
(ANNs) have been applied in approximating many physics phe-
nomena with high degrees of precision [31–40]. For example,
the quantum many-body problem could be solved by utilizing
ANNs [31]. Shen et al. pointed out that the trained ANNs
could be used to simulate the light scattering of multilayer
nanoparticles with different thicknesses [32]. And the trained
ANNs could solve the spectrum prediction and inverse design
problems more quickly than the numerical simulation method
[32,33]. In order to avoid the data inconsistency problem in the
inverse design for photonic devices, a tandem network structure
composed of a forward-modeling unit and an inverse-design
unit was proposed [34]. And ANN-based numerical methods
have been proposed to design and optimize complex photonics
devices, for example, power splitters [35], metagratings [20],
and plasmonic devices [36–38]. Other machine-learning algo-
rithms, such as reinforcement learning, the attractor selection
algorithm, and the perceptron algorithm, were used to design
subwavelength optical coupling devices and asymmetric light
transmitters [39,40]. More interestingly, Liu et al. adopted a
generative adversarial network that includes a generator and
a critic to generate the essentially arbitrary metasurface patterns
that yield a defined or optimized transmission spectrum [41]. It
should be noted that the design of neural network architectures
and the selection of hyperparameters for ANNs require a lot of
expert knowledge [42]. Lately, GA [43], Bayesian optimization
[44,45], and reinforcement learning [45] were tried for the
automated design of ANNs. However, few studies in the

above-mentioned works introduce the design process of the
network architectures for ANNs, which is critical for prediction
accuracy and algorithmic convergence.

In this paper, we propose a novel method using ANNs to
achieve spectrum prediction, inverse design, and performance
optimization for PWCCSs. To verify the effectiveness of
ANNs, the Fano resonance (FR), especially for the plasmon-
induced transparency (PIT) effect, originating from mode cou-
pling in PWCCSs is taken into consideration. We use the GA
to design the network architectures and select the suitable
hyperparameters for ANNs. It is important to note that the
transmission spectra predicted by ANNs are approximate to
the FDTD simulated results with high precision. In addition,
the physical mechanisms behind the FR and PIT effects are
discussed based on the CMT and TMM, and the uncertain
parameters in the theoretical models are fitted by using the
trained ANNs effectively. Moreover, the ANNs have been
successfully employed in solving the inverse design and perfor-
mance optimization problems for PWCCSs.

2. DEVICE DESIGN AND SIMULATION RESULTS

It has been demonstrated that the FR and PIT effect can be
found in the transmission spectrum of PWCCSs due to the
mode coupling between the wideband bright modes and nar-
rowband dark modes [6–9]. The PIT effect is often regarded as
a special case of the FR whose spectrum line shape around the
transmission peak is asymmetric [2]. Two different coupling
methods are used to explain the FR and PIT effect in PWCCSs:
one is based on the direct near-field coupling between bright
modes and dark modes [8,46,47]; the other is based on the
indirect destructive interference through waveguide shift cou-
pling [6,7,9]. Correspondingly, the physical mechanisms of the
FR and PIT effect can be explained by the destructive interfer-
ence between two pathways in a three-level atomic system,
including the ground, excited, and metastable states, or, equiv-
alently, the doublet of dressed states [46]. In this paper, we con-
struct three different PWCCSs that include different numbers
of cavities as illustrations to verify the effectiveness of ANNs.
Figure 1(a) exhibits the simplest three-resonators-coupled
(THRC) system, which consists of an MDM waveguide

Fig. 1. Schematic diagrams of the (a) THRC system, (b) FORC
system, and (c) FIRC system.
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and three side-coupled comb cavities. Compared with the
THRC system [Fig. 1(a)], another one and two rectangular
cavities are added in the up side of cavities 1, 2, and 3 to con-
struct a four-resonators-coupled (FORC) system [Fig. 1(b)]
and a five-resonators-coupled (FIRC) system [Fig. 1(c)], respec-
tively. The detailed structure parameters of all PWCCSs and
the detailed simulation settings of the FDTD method are
described in Appendix A.

When TM-polarized SPPs are injected from the left port of
the THRC system, the propagating plasmonic waves confined
to the metal-dielectric interface can directly couple into the
three comb cavities [7]. As shown in Fig. 2(a), we can observe
that two obvious transmission peaks, which are indicated by
points B and D, exist in the transmission spectrum. It is note-
worthy that dips are located on both sides of the peaks dis-
tinctly, which indicates the double PIT effects emerge in the
transmission spectrum [7]. In order to get insight into the
physical mechanism of the double PIT effects, the normalized
magnetic field distributions of the transmission peaks and dips
indicated by B, D and A, C, E are exhibited in Fig. 2. It can be
found that it is the waveguide phase coupling between the
cavities that gives rise to the peaks in the double PIT effects,
while the reason for the appearance of the dips is related to the
resonance of the cavities [6–9]. The theoretical results shown in
Fig. 2(a) are calculated by using Eq. (B11) in Appendix B based
on the CMT and TMM. It can be seen that the theoretical
results basically agree with that simulated from the FDTD
method. Notably, the suitable parameters (ω1 � 352.9, ω2 �
314.1, ω3 � 288.7, γ1 � 38, γ2 � 109, and γ3 � 80 THz)
in Eq. (B11) are fitted by using the ANNs, and the detailed

principle is presented in the next section. In addition, due
to the extreme dispersion in the FR and PIT effect, the slow
light, which is characterized by the group index ng ��c ×τg�∕
D��c∕D�× �dψ�ω�∕dω�, is shown in Fig. 2(b) [6–9]. Here, c
is the light velocity in vacuum, τg is the group delay, D �
1100 nm is the length between the source and monitor, and
ψ�ω� is the transmission phase shift [9]. It can be observed that
two maximum group indices, 6.04 and 7.74, are achieved for
the double PIT effects at the transparency peak wavelengths,
874 and 984 nm, respectively. Furthermore, we also calculate
the dephasing times for the double PIT effects via T r � 2ℏ∕Γ,
where ℏ is the reduced Planck’s constant and Γ is the full width
at half-maximum (FWHM) of the PIT effects [48,49]. For the
THRC system, the dephasing times of the transmission peaks
on the left (B) and that on the right (D) are estimated as
0.35 and 0.45 ps, respectively.

The physical mechanism of the double PIT effects in the
THRC system is relatively simple, which only takes the
waveguide phase coupling into consideration. By contrast, we
propose two relatively complex PWCCSs that include
direct near-field coupling and indirect waveguide coupling
simultaneously. In the FORC [Fig. 1(b)] and FIRC [Fig. 1(c)]
systems, the rectangular cavities newly added in the structures
are regarded as dark modes because they are excited by the
comb cavities (bright mode) rather than the bus waveguide
[47]. Here, the FDTD simulated transmission spectra (red
solid line) and theoretical transmission spectra (blue circles)
for the FORC and FIRC systems are depicted in Figs. 3(a)
and 4(a), respectively. Compared with the FDTD-simulated
results in Fig. 2(a), the optical characteristics around 1.18 μm
in Figs. 3(a) and 4(a) become steep and asymmetric, indicating
the appearance of the FRs [50]. Interestingly, the double PIT
effects and the FRs simultaneously appear in the transmission
spectrum, which is rarely mentioned in the related articles
[6–9]. For the FRs in Figs. 3(a) and 4(a), the phase is dramati-
cally changed [the transmittance varies sharply from the peak to
dip with a small wavelength range of 12 nm (FORC) and 6 nm
(FIRC)], which is suitable for the application of switches, sen-
sors, slow light, and so on [51]. As shown in Figs. 3(b) and 4(b),
the maximum group indices for the FORC and FIRC systems
are 9.84 and 7.21, respectively. In addition, the dephasing
times of the PIT peaks in the FORC and FIRC systems are
similar to those in the THRC system because of the similar
FWHM (15–20 nm). Compared with the dephasing time of
the single FR dip in the FORC system (0.42 ps), the double
FR dips in the FIRC system have relatively larger values
(TG � 0.95 fs and T I � 0.61 ps) due to the smaller FWHM.
Obviously, the calculated dephasing times in this paper are
larger than the general dephasing times of FR (on the order
of 10 fs) [48,49].

In order to analyze the physical mechanism of the FR and
PIT effects in the FORC system, the corresponding magnetic
field distributions are shown in Fig. 3, where the plasmonic
modes in the rectangular cavity are excited for the peak F
and dip G collectively. In Fig. 3(a), the transmission spectra
for the PWCCSs, which include only cavities 1, 2, 4 (orange
dashed line) and cavities 1, 2 (blue dashed line), are identical.
In addition, the FR becomes weak when coupling distance g3

Fig. 2. (a) Simulated transmission spectrum of the THRC system
for Ag with loss (red solid line) and without loss (orange solid line),
and theoretical transmission spectrum of the THRC system (blue
dashed line); (b) group index and loss factor of the THRC system.
The insets are simulated magnetic field distributions for the incident
light at wavelengths of (A) 851 nm, (B) 893 nm, (C) 955 nm, (D)
1005 nm, and (E) 1048 nm.
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increases from 20 to 30 nm, while other peaks and dips are
stable. We can infer that the destructive interference between
the rectangular cavity 4 and comb cavity 3 gives rise to the
transmission peak F because the near-field coupling among
cavities 1, 2, and 4 is negligible. More importantly, the theo-
retical transmission spectrum calculated by using Eq. (B15) in
Appendix B is quite approximate to the FDTD-simulated
results. The fitted parameters in Eq. (B15) are ω1 � 352.9,
ω2 � 314.1, ω3 � 288.7, ω4 � 255.7, γ1 � 38, γ2 � 109,
γ3 � 80, and γ4 � 0.08 (in THz for all parameters). For the
FIRC system, the physical mechanism of the double FRs in
Fig. 4(a) is similar to the single FR shown in Fig. 3(a), whereas
the difference in the occurrences of the dips G and I is the res-
onance in cavities 5 and 4, respectively. From the magnetic field
distributions F, G, H, and I shown in Fig. 4(a), it can be ob-
served that it is the destructive interference between all the rec-
tangular cavities in the FIRC system and the comb cavity 3 that
forms the transmission peaks F and H, which is demonstrated
by the fact that optical characteristics of the FRs become less
steep when coupling distance g4 is increased from 40 to 60 nm.
Here, the theoretical results (blue dashed line) shown in
Fig. 4(a) are calculated by using Eq. (B21) in Appendix B.
In Eq. (B21), the fitted parameters predicted by ANNs
are ω1 � 352.9, ω2 � 314.1, ω3 � 288.7, ω4 � 255.7,
ω5 � 257.5, γ1 � 38, γ2 � 109, γ3 � 80, γ4 � 0.08, and
γ5 � 0.2 (in THz for all parameters). Here, since we do not
take the higher order and lower order resonance modes in the

cavities into consideration, the theoretically calculated results
imperfectly match with the FDTD-simulated results.

3. SPECTRUM PREDICTION, INVERSE DESIGN,
AND OPTIMIZATION FOR THE PWCCS

Mining the internal relationship between all structure param-
eters and electromagnetic response requires high computational
cost to traverse all structure parameters (brute force) or to uti-
lize the Monte Carlo (MC) method [20]. The efficiency of
the device design and variability analysis will be improved if
all simulation results are predictable based on a small sampling
of simulation results. Machine-learning techniques, especially
for ANNs, are data-driven methods that can predict the re-
sponse for unknown data, for instance, based on classification,
clustering, and regression [52]. More interestingly, it has been
demonstrated that the trained ANNs can predict the same
electromagnetic responses faster than conventional simula-
tion methods [32,33]. Here, we use ANNs to predict the trans-
mission spectrum for arbitrary structure parameters of
PWCCSs. As shown in Fig. 5(a), the ANNs take the structure
parameters (the dimension of the waveguide and cavities) as the
input and predict the corresponding electromagnetic responses.
For example, for the THRC system, the potential relationships

Fig. 4. (a) Simulated transmission spectrum of the FIRC system for
g4 � 40 nm (red solid line) and 60 nm (orange solid line); theoretical
transmission spectrum of the FIRC system (blue dashed line);
(b) group index of the FIRC system. The insets are calculated magnetic
field distributions for the incident light at wavelengths of (A) 851 nm,
(B) 893 nm, (C) 954 nm, (D) 1010 nm, (E) 1056 nm, (F) 1151 nm,
(G) 1160 nm, (H) 1178 nm, and (I) 1189 nm.

Fig. 3. (a) Simulated transmission spectrum of the FORC system
for g3 � 20 nm (red solid line) and 30 nm (orange solid line); theo-
retical transmission spectrum of the FORC system (blue circles);
simulated transmission spectrum of the FORC system, which includes
only cavities 1, 2, 4 (orange dashed line) and cavities 1, 2 (blue dashed
line); (b) group index of the FORC system. The insets are calculated
magnetic field distributions for the incident light at wavelengths of (A)
0.851 μm, (B) 0.893 μm, (C) 0.953 μm, (D) 1.01 μm, (E) 1.056 μm,
(F) 1.168 μm, and (G) 1.18 μm.
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between the structure parameters (the lengths, widths of the
comb cavities 1, 2, 3, and the lengths of the gaps 1, 2 between
the cavities) and the transmission spectrum are taken into con-
sideration. Since the FORC and FIRC systems have more
cavities than the THCR system, more structure parameters
are input into the ANNs. The variation ranges of the structure
parameters are fixed to be �20 nm. Specifically, it means that
the smallest length of the resonator 1 is 460 nm, and the largest
one is 500 nm. In the FDTD simulations, the length of the
resonator 1 is randomly generated from 460 to 500 nm with
the precision of 1 nm. Repeated 2D FDTD simulations are
employed to generate 20,000 different instances for eight
parameters (l 1, l 2, l 3, w1, w2, w3, g1, g2) based on MC sam-
pling [53]. It is noteworthy that the generation of the training
and test instances, including structure parameters and the
discrete data points in the simulated transmission spectrum,

requires a significant amount of time. However, the prediction
process for new instances is faster than conventional simulation
methods because the weights and thresholds of ANNs are fixed
once the training process is completed [32]. It takes us 30 h to
generate 20,000 training instances with NVIDIA Tesla P100
GPU accelerators [54]. In order to guarantee the generalization
of the training models, the ANNs are trained by using the
20,000 instances, while another 2000 instances are left as
the test sets to validate the training effect. The model training
of ANNs is done by optimizing the mean squared error based
on the stochastic gradient descent (SGD) or adaptive moment
estimation (Adam). Attempting to exhibit the performance of
the trained ANNs, a simple indicator, score [55]

1 − J2 � 1 −

PN
i�0 �ytruei − ypredi �2PN

i�0 �ytruei − ypredi∕N �2 , (1)

is defined to measure the distance between the ANN-predicted
results and the ground truth (FDTD simulations). In Eq. (1),
N relates to the total discrete data points in the FDTD-
simulated transmission spectrum, and ytrue and ypred are the
discrete data points generated by utilizing the FDTD method
and ANNs, respectively. The best and worst possible values
of the score are 1.0 and arbitrary negative, respectively.

It should be noted that the network architecture and the
selection of the hyperparameters determine the performance
(prediction accuracy, convergence, and calculation time) of
ANNs [42]. It is generally true that a high computation cost
is taken to train the deep neural networks due to the existence
of a huge number of weights between the neurons in different
layers [52]. In order to ensure good accuracy and reduce train-
ing time, the GA is applied in optimizing the network archi-
tecture and selecting the hyperparameters (the algorithmic
details of the GA are described in Appendix C). In the GA,
the network architectures are fully connected, and four critical
hyperparameters (number of layers, neurons per layer, the solv-
ers for weights, and the activation functions for hidden layers)
are regarded as the genetic genes. The score 1 − J2 on the test
sets is used as the fitness to evaluate each population’s accuracy.
As shown in Fig. 5(b), the scores are increased evolutionally and
level out at high levels, which indicates the optimizations for
ANNs are efficient. After optimizing the network architectures
based on the GA, the suitable hyperparameters for the THRC,
FORC, and FIRC systems are [8-200-400-300-300-300-
50-200-200, “relu,” “adam”], [12-400-200-300-400-100-200-
200, “tanh,” “adam”], and [15-300-400-400-200-400-200,
“relu,” “sgd”], respectively. Here, the input layers in the ANNs
are the number of structure parameters, while the output layers
match the discrete data points uniformly sampled from the
transmission spectrum.

Due to the relatively simple network architecture, it takes a
few minutes to train the ANNs by using the multilayer percep-
tion regressor (MLPRegressor) in the Scikit-learn library, which
is a famous machine-learning toolbox for Python [55]. The
other hyperparameters, such as L2 penalty, batch_size, max_
iter, and tolerance, are set to 10−5, “auto,” 1000, and 10−5

for all the PWCCSs. As shown in Figs. 5(b) and 5(c), for
the THRC system, the score 1 − J2 on the test sets is finally
stabilized at 0.9862, and the training loss occasionally has sharp

Fig. 5. (a) Diagram of the ANNs applied in the spectrum predic-
tion; (b) fitness for different generations in the spectrum prediction;
(c) training losses for different iterations in the spectrum prediction;
FDTD simulated transmission spectra and ANN-predicted transmis-
sion spectra for the (d) THRC, (e) FORC, and (f ) FIRC systems;
(g) fitness for different generations in the parameter fitting. The inset
reveals the training losses for different iterations in the parameter
fitting.
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declines. This means that no matter the training sets or test sets,
the predicted transmission spectra generated from the ANNs
are very close to the simulation results calculated by the FDTD
method. To illustrate the effectiveness of the spectrum predic-
tion based on the ANNs, an arbitrary structure parameter is
randomly selected from the test sets to make a comparative
analysis between the ANNs’ predicted results and the
FDTD simulation results. In Fig. 5(d), the red line relates to
the FDTD-simulated transmission spectrum corresponding to
the structure parameters (l 1 � 466, l2 � 524, l 3 � 589,
w1 � 115, w2 � 93, w3 � 90, g1 � 280, and g2 � 335 nm),
while the blue dots represent that predicted by the ANNs for
the same structure parameters. It can be observed that the dou-
ble PIT effects predicted by the ANNs match quite well with
the FDTD-simulated transmission spectrum, even outside the
training sets. Obviously, the trained ANNs not only fit the
training data, but also learn some potential relationships
between the structure parameters and the transmission spec-
trum for the THRC system. Similarly, the ANNs are also
applied in spectrum prediction for the FORC and FIRC
systems, and the comparison results are shown in Figs. 5(e)
and 5(f ), respectively. After many iterative rounds of model
training, the scores on the test sets gradually rise to 0.9010
(FORC) and 0.9538 (FIRC), which indicates that the
ANNs can effectively predict the transmission spectra for
the relatively complex PWCCSs. In Figs. 5(e) and 5(f ), the
ANN-predicted transmission spectra and the FDTD-simulated
transmission spectra are broadly similar, though the similarity
for the steep optical characteristics (such as the FR) is imperfect.
The reason for this imperfection is attributed to the insuffi-
ciency of the training data and the relatively simple network
architectures. Actually, we can improve the precision of
spectrum prediction by adding training data or designing com-
plex network architecture. However, it is at the cost of training
time and power, and the overfitting problem is difficult to
avoid [56,57].

In addition, when the physical phenomena in the PWCCSs
are theoretically analyzed, there are many theoretical parame-
ters needing to be addressed by using the data-fitting method. It
is more beneficial to automatically determine the theoretical
parameters for a specific electromagnetic response because
the data fitting is an empirical and tedious process. We use
ANNs to search the suitable parameters for the theoretical
models in Appendix B, and it consists of the following steps:
(i) 20,000 training instances, which include the theoretical
parameters and 200 discrete data points in the theoretically cal-
culated transmission spectrum are generated by utilizing the
MC method. It only takes a few seconds to generate the train-
ing sets because the computing process for theoretical models is
not complex. (ii) In order to optimize the network architectures
of the ANNs, we also use the GA to select the suitable hyper-
parameters. In Fig. 5(g), it can be observed that the evolution-
ary scores are maintained at a higher level from the first
generation because the theoretical models behind the physical
phenomenon really exist. (iii) We select three excellent ANNs
whose scores on the test sets are greater than 99.60% to pre-
dict the fitting parameters for the FDTD-simulated transmis-
sion spectra, and the inset in Fig. 5(g) reveals the variation

tendency of the loss in the model training. In Figs. 2(a),
3(a), and 4(a), the similarity between the theoretically calcu-
lated transmission spectra and the FDTD transmission spectra
demonstrates the ANNs can predict the fitting parameters for
the theoretical models.

For the PWCCSs shown in Fig. 1, the inverse design based
on ANNs is also analyzed here. For this purpose, we should
design an arbitrary transmission spectrum within reasonable
limits, and the ANNs could predict the structure parameters
that would most closely produce the artificial transmission
spectrum. Compared with the “forward” ANNs, which have
applications in the spectrum prediction (from structure param-
eters to transmission spectrum), an “inverse” network architec-
ture that reproduces the structure parameters from the
transmission spectrum is specially constructed. As shown in
Fig. 6(a), the inputs and outputs of the inverse network archi-
tecture are the discrete points uniformly sampled from the
transmission spectrum and the structure parameters of the
PWCCSs, respectively. Similarly, the inverse ANNs are trained
by using the 20,000 training instances, and the network archi-
tectures are optimized by utilizing the GA. After a few iterative
evolution steps, the suitable network architectures and hyper-
parameters of the inverse ANNs for the THRC, FORC, and
FIRC systems are [200-200-400-400-8, “relu,” “sgd”], [200-
200-400-300-100-12, “relu,” “adam”], and [200-300-300-
300-200-15, “relu,” “adam”], respectively. Compared with
the THRC system, the inverse design for the FORC and
FIRC systems requires more sophisticated network architecture
because more structure parameters must be predicted. The ef-
fectiveness of the inverse design for the THRC, FORC, and
FIRC systems is quantitatively validated by calculating the score
on the test sets. After a few iterative training steps, the score
reaches 0.912, 0.943, and 0.896 for the THRC, FORC,
and FIRC systems, respectively. In order to provide a vivid
visualization of the inverse design effect for the PWCCSs,
the FDTD-simulated transmission spectra randomly selected
from the test sets are input into the ANNs. The red circles
in Figs. 6(b)–6(d) show the real structure parameters, while
the blue circles relate to the inverse ANN-predicted structure
parameters. For the sake of convenience, the structure param-
eters are normalized to a range from 0 to 1. Interestingly, it can
be observed that most of the predicted structure parameters
agree with the real structure parameters accurately. To consider
the influence of prediction error, the insets in Figs. 6(b)–6(d)
depict the FDTD-simulated transmission spectra correspond-
ing to the real structure parameters (red lines) and predicted
structure parameters (blue dots) for the THRC, FORC, and
FIRC systems, respectively. Compared with the FDTD results,
it can be found that the structure parameters predicted by the
ANNs can reproduce transmission spectra with a high similar-
ity. Obviously, it no doubt provides a new way to train ANNs
for the inverse design of PWCCSs.

Similar to the inverse design, the ANNs can be applied in
optimizing for a specific property of PWCCSs, such as trans-
mittance, bandwidth, and FWHM. In order to validate the per-
formance optimization of the transmittance for an arbitrary
wavelength and avoid generating unreasonable results, the
transmission spectrum randomly selected from the test sets
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is shifted manually for the THRC system. The blue solid line
and red solid line in Fig. 6(e) are the FDTD-simulated trans-
mission spectrum and the redshifted transmission spectrum,
respectively. It can be observed that the transmittance at
900 nm increases from 0.05 to 0.68 by shifting the transmis-
sion spectrum. The redshifted transmission spectrum is input
into the inverse ANNs, and the most probable structure
parameters are predicted by the ANNs. The black dashed line
in Fig. 6(e) represents the FDTD-simulated result correspond-
ing to the structure parameters predicted by the inverse
ANN (l1 � 486, l2 � 550, l3 � 608, w1 � 89.7, w2 � 96,
w3 � 94, g1 � 290, and g2 � 341, all in nm). Obviously, the
transmittance optimization for a given wavelength can be
achieved by using ANNs due to the similarity between the
ANN-predicted transmission spectrum and the redshifted

transmission spectrum. For the redshifted transmission spec-
trum, we have compared the algorithmic performance between
the ANNs and two representative evolutionary algorithms [GA
and particle swarm optimization (PSO)]. Please see the com-
parative analysis in Appendix D. Moreover, we try to optimize
the bandwidth of the optical channel in the double PIT effects
or FR based on the ANNs. For the FORC system, we expect to
further reduce the bandwidth of the FR to achieve much
steeper optical characteristics. For this purpose, the transmis-
sion spectrum is designed optimally [blue line in Fig. 6(f )],
especially for the bandwidth of the FR (the bandwidth bet-
ween the peak and dip of the FR is reduced from 12 to 8 nm).
Then, the optimized transmission spectrum is input into the
ANNs, and the predicted structure parameters are l 1 � 482,
l 2 � 539, l3 � 601, l 4 � 903, w1 � 101, w2 � 100,
w3 � 102, w4� 101, g1 � 276, g2 � 331, g3 � 20, and
s1 � 1 (in nm for all parameters). Here, the black dots in
Fig. 6(f ) represent the FDTD simulation results calculated
for the predicted structure parameters. As shown in Fig. 6(f ),
the FDTD-simulated results are close to the optimized trans-
mission spectrum, which indicates the feasibility for bandwidth
optimization by using the ANNs. Besides, the transmittance of
the transmission spectrum for the FIRC system is also opti-
mized. The red line in Fig. 6(g) is the original transmission
spectrum randomly selected from the test sets for the FIRC
system, and the blue line is the manually blueshifted transmis-
sion spectrum. Here, the transmission spectrum in a given
wavelength range (700–1300 nm) can be shifted to achieve
steeper optical characteristics or higher transmittance. When
the blueshifted transmission spectrum is input into the inverse
ANNs, the structure parameters (l 1�443, l 2�526, l 3�609,
l 4�896, l5�908, w1 � 104, w2 � 101, w3 � 109,
w4 � 96, w5 � 111, g1 � 266, g2 � 327, g3 � 15, g4 � 60,
s1 � 5.4, and s2 � 7.4, all in nm) are predicted quickly.
Apparently, the blueshifted transmission spectrum agrees well
with the FDTD-simulated transmission spectrum (black
dotted line) calculated for the predicted structure parameters,
which realizes the transmittance optimization for a specific
wavelength in the FIRC system.

Finally, we should consider the influence of the training set
size on the performance of the ANNs because generating the
training instances takes significant effort, especially for the
method based on 3D FDTD simulation. Here, we calculate
the prediction accuracies for different numbers of training
instances in the spectrum prediction and inverse design; the
calculated results are shown in Fig. 7. It should be noted that

Fig. 6. (a) Diagram of the ANNs applied in the inverse design and
performance optimization problems; comparison results between the
real structure parameters and ANN-predicted structure parameters
for the (b) THRC, (c) FORC, and (d) FIRC systems. The insets
in (b)–(d) are the FDTD-simulated transmission spectra correspond-
ing to the real structures (red solid line) and ANN-predicted structure
parameters (blue dashed line); (e) transmittance optimization for the
THRC system; (f ) bandwidth optimization for the FORC system;
(g) transmittance optimization for the FIRC system.

Fig. 7. Prediction accuracies for different numbers of training
instances in the (a) spectrum prediction and (b) inverse design.
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we select the previously optimized ANNs whose prediction
accuracies (scores) exceed 90% when the training set size is
20,000 to illustrate the influence of different training set sizes.
As shown in Fig. 7, all the prediction accuracies are improved
when the number of training instances increases from 5000 to
12,000, which indicates that the extension of training sets is
beneficial to the accuracy. More importantly, the scores for
the THRC system (eight structure parameters) are larger than
those of the FORC system (12 structure parameters) and FIRC
system (15 structure parameters) with the same training set size.
This means that the more targeted the structure parameters are,
the larger the training set size needed. Thus, if a large number
of structural parameters need to be predicted, we should appro-
priately increase the number of training instances or design a
more complex network architecture of ANNs to ensure accu-
racy. To be sure, generating the training instances is an ineluc-
table problem for all supervised machine learning, including
the ANN-based method. In Ref. [32], Peurifoy et al. pointed
out two reasons why this method is still very useful, even
though a certain amount of training instances are necessary. We
would add two further reasons why we believe the method is
valuable. First, once the ANN-based model is constructed, we
can obtain the predicted results orders of magnitude faster than
conventional simulations. For example, for the same inverse
design problem, the required time of the ANNs is longer than
that of the GA and PSO (12 h) because it takes 30 h to generate
the training instances and to train the model. However, if we
have three different transmission spectra that need to be
inversely designed, it spends 36 h on iterative optimization
based on GA or PSO. Then, the advantage in time of GA
and PSO is not obvious because the ANNs-based model is
reusable once the model is constructed. Second, many photonic
devices, especially for plasmonic devices (plasmonic waveguide
systems, gratings, and so on) and photonic crystals, are
usually calculated numerically based on 2D FDTD simulation.
The ANN-based method is very suitable for applications in
these photonic devices, which can be simulated by 2D
FDTD simulation due to the short time in generating training
instances.

4. CONCLUSION

In this paper, we proposed a novel method using ANNs to
achieve spectrum prediction, inverse design, and performance
optimization for PWCCSs. The FR and PIT effects originating
from mode coupling in PWCCSs were explained theoretically
and taken as the example to verify the effectiveness of ANNs.
The uncertain parameters in the theoretical models were fitted
by using the ANNs effectively. In order to ensure good accuracy
and reduce training time, we used the GA to design the net-
work architectures and select the suitable hyperparameters for
ANNs. It is important to note that the transmission spectrum
predicted by ANNs is approximate to the FDTD-simulated re-
sults with high precision. More importantly, the ANNs have
been successfully employed in solving the inverse design and
performance optimization problems for PWCCSs. Obviously,
we constructed a novel model-driven analysis method for
PWCCSs, which are expected to have significant applications
in the design, analysis, and optimization of optical devices.

APPENDIX A: STRUCTURE PARAMETERS AND
SIMULATION SETTINGS

In all PWCCSs, silver (Ag) is selected as the background metal
which supports the propagation of SPPs (the relative per-
mittivity is described by using the Drude model with
(ε∞,ωp, γp� � �3.7, 9.1 eV, 0.018 eV)). These parameters of
the Drude model have been widely used for wavelengths be-
tween 0.4 and 2 μm in many works [6–9] and match well with
the experimental data obtained from Ref. [58], as shown in
Fig. 8(a). The relative permittivity of air εa is 1. We have cal-
culated the transmission loss factor of the SPP mode in the
MDM waveguide, and the results are shown in Fig. 2(b). It
should be noted that the maximum loss factor in our operating
wavelength region is only 105.4 dB/mm at λ � 700 nm, re-
sulting in a small loss (0.93 dB) for SPPs propagating from cav-
ity 1 to cavity 3 in the THRC system. In addition, as shown in
Fig. 2(a), the loss of the propagated SPP mode would decrease
the transmission, but it did not influence the position of the
resonance wavelength of three comb cavities. As a result, Ag
is a suitable material for propagation of SPPs in our proposed

Fig. 8. (a) The dispersion of Ag described by using the Drude model
(red and blue solid lines) and experimental data (red and blue dia-
mond-shaped markers), respectively; (b) transmission of THRC sys-
tem when εAg is described by the Drude model (cyan solid line) and is
set as a constant equal to −22.217� 0.26i (orange solid line),
−49.187� 0.758i (yellow solid line), and −85.667� 1.665i (purple
solid line), corresponding to the εAg obtained by the Drude model at
λ � 0.7, 1, and 1.3 μm, respectively; (c) theoretically (triangle and
inverted triangle markers) and numerically (blue solid and dashed
lines) obtained nMDM of SPP mode supported by the MDM wave-
guide in the 2D case, and the numerically obtained nMDM in the
3D case at tcavity � 300 nm (cyan solid and dashed lines), tcavity �
500 nm (red solid and dashed lines), tcavity � 700 nm (purple solid
and dashed lines), and tcavity � 900 nm (orange solid and dashed
lines), respectively. The inset is the schematic of the 3D MDM cavity.
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PWCCSs. It should be noted that the dispersion of Ag would
affect the transmission of our plasmonic waveguide systems.
As shown in Fig. 8(b), when not considering the dispersion of
Ag, a small shift of the whole transmission of the THRC system
would be induced. Besides, as the orange, yellow, and purple
solid lines show, when we set εAg as a constant equal to the
Drude-model-described εAg at a larger wavelength, the trans-
mission of the system will blueshift. This is because the real
part of effective refractive index of the guided mode in the
MDM waveguide decreases with the increasing of wavelength
[Fig. 8(c)]. For our studied FORC and FIRC systems, the
dispersion of Ag would induce a similar effect on the transmis-
sion. The width of the bus waveguide is fixed as w � 100 nm.
The structure parameters of the cavities in the PWCCSs are
stochastic variables within a certain range, and we only intro-
duce the initial values: the lengths and widths of all comb
cavities 1, 2, and 3 are kept as l 1 � 480 nm, l2 � 540 nm,
l 3 � 600 nm, and w1 � w2 � w3 � 100 nm, respectively.
The waveguide coupling distances among comb cavities 1,
2, and 3 are g1 � 275 nm and g2 � 330 nm. In Fig. 1(b),
the coupling distance between rectangular cavity 4 and comb
cavity 3 is g3 � 20 nm, and the length and width of rectan-
gular cavity 4 are set to be l 4 � w1 � w2 � w3 � g1 � g2 �
885 nm and w4 � 100 nm, respectively. In Fig. 1(c), the
structure parameters of rectangular cavity 5 are similar to those
of cavity 4, and the coupling distance between cavities 4 and
5 is g4 � 20 nm.

As the blue solid and dashed lines show in Fig. 8(c), the
refractive index of the guided mode in the MDM waveguide
nMDM can be obtained by the mode solver in software
Lumerical mode solutions. The real part of nMDM (blue solid
line) decreases with the increase in wavelength, while the imagi-
nary part of nMDM (blue dashed line) increases with wavelength.
As the triangle and inverted triangle markers show in Fig. 8(c),
we have calculated this dispersion by using the dispersion equa-
tion in the Appendix B. It can be found that the theoretically
calculated dispersion curves match well with the simulated ones
(blue lines). Besides, as the four solid and dashed lines colored in
cyan, red, purple, and orange show in Fig. 8(c), since the
SPP waves are intensely confined to the metal-air interface,
the nMDM of the guided mode supported by the 3D MDM
waveguide gets closer to the nMDM of the 2DMDM waveguide
when the air cavity gets thicker. And the nMDM of the 3DMDM
waveguide with tcavity varying from 300 to 900 nm is close to the
nMDM of 2DMDM. These mean that the 2DMDMwaveguide
can basically reflect the physical property of the 3D MDM
waveguide. Thus, the PWCCSs can be simplified to a 2D
model for numerical simulation to save time, which has been
applied in the most MDM-relevant works [6–9].

The characteristic spectral responses of all the PWCCSs in
this paper are calculated by using the FDTD method (adopting
the commercial software Lumerical FDTD solutions). In the
actual experiment, the incident laser source can excite SPP
waves via a metal grating located at the front of the bus wave-
guide [14–16]. The incident source is the solved eigenmode by
using FDTD solutions, and the distance between the source
and monitor is 1100 nm. The perfectly matched layers are used
for the simulation boundary conditions, and the number of

perfectly matched layers is eight. In order to ensure the accuracy
and algorithm convergence, the mesh settings in cavities are 20
grids in the width direction and 80 grids in the length direction,
while those in the waveguide are 30 grids in the width direction
and 200 grids in the length direction. Nonuniform meshes with
an eight-level mesh accuracy are adopted to represent the other
simulation regions.

APPENDIX B: THEORETICAL ANALYSIS OF THE
FR AND PIT EFFECTS

To obtain a qualitative understanding of the physical phenom-
ena, we theoretically analyze the FR and PIT effects originating
from the PWCCSs by combining the CMT and TMM [17]. As
shown in Fig. 9, the coupling coefficients between the plasmonic
waveguide and three cavities are γ1, γ2, and γ3, respectively. And
the amplitudes of the input and output waves into the cavities are
donated by sm�, sm− (m � 0, 1, 2, 3). Since cavities 1, 2, and 3
do not directly couple with each other, we take a simple case into
consideration, where only a single cavity connects to the bus
waveguide. The temporal change of the normalized mode
amplitude of the cavity aj is described by

dam
dt

� � jωm − γm�am � j
ffiffiffiffiffi
γm

p �s�m−1�� � sm−�, (B1)

whereωm (m � 1, 2, 3) is the resonant frequency of cavities 1, 2,
and 3, and the time dependence is assumed to be exp�jωt�. Due
to the energy conversion and the time reversal symmetry, we can
derive the relationships between the amplitudes of the input-
output waves in the waveguide and the resonant modes in
cavities 1, 2 as follows:

s�m−1�− � sm− � j
ffiffiffiffiffi
γm

p
am, (B2)

sm� � s�m−1�� � j
ffiffiffiffiffi
γm

p
am: (B3)

Using Eqs. (B1)–(B3), it can be derived that

s�m−1�− � −
γm

pm − γm
sm− �

pm − 2γm
pm − γm

sm�, (B4)

s�m−1�� � pm
pm − γm

sm− �
γm

pm − γm
sm�, (B5)

where pm � j�ω − ωm� � γm. Equations (B4) and (B5) can be
written in the transfer matrix form as�

s�m−1�−
s�m−1��

�
� Mm

�
sm−
sm�

�
, (B6)

where

Mm � 1

pm − γm

�
pm − 2γm −γm

γm pm

�
: (B7)

Fig. 9. Schematic diagram of the THRC system.
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For the THRC system shown in Fig. 9, the relationship
between input and output waves can be expressed as�

s0−
s0�

�
�M 1

�
ejφ1 0
0 e−jφ1

�
M 2

�
ejφ2 0
0 e−jφ2

�
M 3

�
s3−
s3�

�
, (B8)

where φn � k0nMDMgn (n � 1, 2) is the phase shift induced by
the SPPs propagating between two adjacent cavities, and nMDM

is the effective index of the waveguide, which is solved by the
dispersion equation [9]

tanh

�
wπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2MDM − εa

p
λ

�
� −

εa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2MDM − εm

p
εm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2MDM − εa

p : (B9)

The transfer matrix of MTHRC
all for the THRC system is

expressed as

MTHRC
all � M 1

�
ejφ1 0
0 e−jφ1

�
M 2

�
ejφ2 0
0 e−jφ2

�
M 3: (B10)

Since we only launch SPP mode into the system from the
input port, i.e., s3− � 0, the transmission of the THRC system
is determined by j1∕MTHRC

all:22 j2. Using Eqs. (B7) and (B10), we
can obtain the transmission of the THRC system:

T THRC �
� �p1 − γ1��p2 − γ2��p3 − γ3�
γ1γ3�2γ2 − p2�ej�φ1�φ2� − p1γ2γ3e

j�φ2−φ1� − γ1γ2p3e
j�φ1−φ2� � p1p2p3e

−j�φ1�φ2�

�
2

: (B11)

As shown in Fig. 3, the FR is induced by the coupling between
cavity 3 and cavity 4, and the coupling among cavities 1, 2, and
cavity 4 is very weak; thus we can only alter transfer matrixM 3 in
Eq. (B10) to obtain the transmission spectrum of the FORC
system (as shown in Fig. 10). We assume the resonant frequency
of cavity 4 isω4. The time evolution of the amplitudes of cavities
3 and 4 in steady state can be described as

da3
dt

��jω3 − γ3 − γ4�a3� j
ffiffiffiffiffi
γ3

p �s2�� s3−�� j
ffiffiffiffiffi
γ4

p
a4, (B12)

da4
dt

� �jω4 − γ4�a4 � j
ffiffiffiffiffi
γ4

p
a3: (B13)

Using Eqs. (B2), (B3), (B12), and (B13), transfer matrixM 3 for
the FORC system can be derived as

M FORC
3 � 1

pFORC
3 − γ3

�
pFORC
3 − 2γ3 −γ3

γ3 pFORC
3

�
, (B14)

where pFORC
3 � j�ω − ω3� � γ3 � γ4 � γ4∕�j�ω − ω4� � γ4�.

Thus, employing Eqs. (B7), (B10), and (B14), the transmission
of the FORC system can be expressed as

T FORC �
� �p1 − γ1��p2 − γ2��pFORC

3 − γ3�
γ1γ3�2γ2 − p2�ej�φ1�φ2� − p1γ2γ3e

j�φ2−φ1� − γ1γ2pFORC
3 ej�φ1−φ2� � p1p2p

FORC
3 e−j�φ1�φ2�

�
2

: (B15)

Similarly, for the FIRC system illustrated in Fig. 11, the time
evolution of the mode amplitudes of cavities 3, 4, and 5 in steady
state can be described as

da3
dt

� �jω3 − γ3 − γ4�a3 � j
ffiffiffiffiffi
γ3

p �s2� � s3−� � j
ffiffiffiffiffi
γ4

p
a4,

(B16)
da4
dt

� �jω4 − γ4 − γ5�a4 � j
ffiffiffiffiffi
γ4

p
a3 � j

ffiffiffiffiffi
γ5

p
a5, (B17)

da5
dt

� �jω5 − γ5�a5 � j
ffiffiffiffiffi
γ5

p
a4: (B18)

Using Eqs. (B2), (B3), and (B16)–(B18), transfer matrixM 3 for
the FIRC system can be derived as

M FIRC
3 � 1

pFIRC3 − γ3

�
pFIRC3 − 2γ3 −γ3

γ3 pFIRC3

�
, (B19)

where

pFIRC3 � j�ω − ω3� � γ3 � γ4

� γ4
j�ω − ω4� � γ4 � γ5 � γ5

j�ω−ω5��γ5

: (B20)

Thus, employing Eqs. (B7), (B9), (B10), and (B20), the trans-
mission of the FIRC system can be obtained:

T FIRC �
� �p1 − γ1��p2 − γ2��pFIRC3 − γ3�
γ1γ3�2γ2 − p2�ej�φ1�φ2� − p1γ2γ3e

j�φ2−φ1� − γ1γ2pFIRC3 ej�φ1−φ2� � p1p2p
FIRC
3 e−j�φ1�φ2�

�
2

: (B21)

APPENDIX C: DESIGN OF THE NEURAL
NETWORK ARCHITECTURE

In this paper, the GA is used in designing the network archi-
tecture and selecting the hyperparameters of ANNs. The GA
consists of the following steps: (i) Randomly generating N �
20 network architectures to create initial populations as the first
generation. Here, four critical hyperparameters including the
number of layers (3, 4, 5, 6, 7, 8), neurons per layer (10,
50, 100, 200, 300, 400), the solvers for weight optimization
(sgd, adam) and the activation functions for the hidden layer
(relu, tanh) are regarded as the genetic genes. The network ar-
chitectures are constructed by selecting random values for the
above-mentioned hyperparameters. (ii) Evaluating each popu-
lation’s fitness. The test sets’ score, which measures the distance
between the results predicted by the ANNs and the ground
truth, is regarded as the fitness function. It takes some time
because we have to train the weights for each network and
see how well they perform on the test sets. (iii) If the generation
of networks evolves for 10 times or the fitness does not increase
for more than three generations, then the optimization process
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is stopped; otherwise, proceed to Step (iv). (iv) A new popu-
lation consisting of new network architectures is reproduced
and updated by selecting, crossing, and mutating the genetic
genes based on each population’s fitness. In the process of se-
lection, the network architectures in the current population are
sorted by fitness. We keep some percentage of the top networks
(25%, 5 networks) to become part of the next generation and
to reproduce children. In addition, we also randomly keep three
lower ranking networks and mutate a few of them to avoid fall-
ing into local optimum. In the process of crossover, two child
network architectures replace their parent network architec-
tures by combining the hyperparameters randomly from their
parents. For instance, one network architecture might have the
same number of layers as its father and the rest of its parameters
from its mother. In order to add randomness, each population
in the new generation has a 5% probability of mutation (a
hyperparameter is randomly changed to another value in the
choice space). Then, an algorithmic loop is constructed by
evaluating the new generation in Step (ii), judgment in Step
(iii), and reproducing a new population in Step (iv) [24].

APPENDIX D: COMPARATIVE ANALYSIS OF THE
OPTIMIZATION ALGORITHMS

For the same targeted transmission spectrum, we compare the
algorithmic performance between the ANNs and two represen-
tative evolution algorithms (GA and PSO). Here, we select the
redshifted transmission spectrum in Fig. 6(e) as the targeted
transmission spectrum, and its optical characteristics (yellow
solid line) are shown in Fig. 12(c). For the GA and PSO,
the number of initial populations in the first generation is
the same (N � 50). And we use the spectral integration
analysis [30] as the fitness function to measure the deviation
between the ground truth [redshifted transmission spectrum
S0�λ�] and the optimized transmission spectrum S0�λ� for
λmin < λ < λmax, which is expressed as

F �
Xλmax

λmin

jS0�λ� − S�λ�j: (D1)

For the GA, we use the Sheffield GA toolbox [59] integrated
with the 2D FDTD method to inversely design the structure.
The parameter choices of Sheffield GA, such as the maximum
number of generations, generation gap, crossover operator,
crossover probability, selection function, and mutation proba-
bility are set as 100, 0.9, single-point crossover (xovsp), 0.7,
roulette wheel selection (rws) and 0.05, respectively. Compared
with the GA, PSO is also an evolutionary algorithm whose par-
ticles move through the optimization space with a specified
velocity for searching the optimal structure parameters [60].
The velocity of the ith particle in the �k � 1�th iteration
can be described as [60]

V k�1
i � WV k

i � c1r1�pki − X k
i � � c2r2�gdk − X k

i �, (D2)

where X k
i is the position of each particle in d -dimensional op-

timization space, pki is the best position for each particle, gdk is
the best position of all the particles, W relates to the inertia
weight, c1 � 1.49445 and c2 � 1.49445 are acceleration con-
stants, and r1 and r2 are random values (0–1). The position of
the ith particle is updated according to the following equation:

X k�1
i � X k

i � V k�1
i : (D3)

Here, the other parameters for the PSO, such as the maximum
number of generations, maximum velocity, and minimum
velocity are set as 100, 1, and −1, respectively. Figure 12(a)
shows the fitness of GA and PSO for different generations
in the reverse design. It can be found that the fitness F decreases
to 1.82 (GA) and 0.76 (PSO) gradually, which indicates these
methods are effective. After a lot of iterative optimization steps,
we select the representative structure parameters for GA and

Fig. 11. Schematic of the FIRC system.

Fig. 12. (a) Fitness of GA (blue) and PSO (black) for different gen-
erations in the inverse design; (b) comparison results between the
ANN-predicted parameters, GA-optimized, and PSO-optimized
structure parameters; (c) FDTD-simulated transmission spectra calcu-
lated for the ANN-predicted, GA-optimized, and PSO-optimized
structure parameters.

Fig. 10. Schematic of the FORC system.
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PSO in the 100th generation and show them in Fig. 12(b). The
red circles in Fig. 12(b) exhibit the ANN-predicted structure
parameters, while the blue circles and black circles relate to the
GA-optimized and PSO-optimized structure parameters. For
the sake of convenience, the structure parameters are normal-
ized to range from 0 to 1 here. It can be found that the ANN-
predicted structure parameters are close to the PSO-optimized
structure parameters, while the difference between the ANN-
predicted results and GA-optimized results is relatively large.
Figure 12(c) shows the FDTD-simulated transmission spectra
calculated for the ANN-predicted, GA-optimized, and PSO-
optimized structure parameters. It is surprising to observe that
all the methods can generate very similar transmission spectra
due to the similarity between the targeted transmission spec-
trum and optimized transmission spectrum. We should pay
attention to two problems. First, for the ANN-based, GA-
optimized, and PSO-optimized methods, the average absolute
deviations for each point in the transmission spectrum are
0.72/400 = 0.0018, 0.76/400 = 0.0019, and 1.84/400 =
0.00455, respectively. Obviously, the accuracies of the ANN-
predicted method and PSO-optimized method are slightly
higher than that of the GA-optimized method. It is hard to
distinguish the deviation by naked eye due to the small average
deviation. Second, the predicted or optimized waveguide
coupling distances g1 (parameter 7) and g2 (parameter 8)
are similar for all the methods. And these two structure param-
eters are most important in all the structure parameters.

For algorithmic computation time, if we only need a single
transmission spectrum to design, the required time of the
ANNs is longer than that of the GA and PSO (12 h) because
it takes 30 h to generate the training instances and train the
model. Obviously, it is less time-consuming for inversely
designing a single transmission spectrum based on the evolu-
tionary algorithms compared with the ANN-predicted method.
However, once the ANN model is trained, it can predict the
structure parameters orders of magnitude faster than conven-
tional simulations. As a result, the ANN-predicted method
can save more time and energy if several transmission spectra
must be inversely designed. For example, if we have three dif-
ferent transmission spectra, iterative optimization based on GA
or PSO takes 36 h, while the time for the ANN-predicted
method is still 30 h. Obviously, the advantage of the ANN-
based model is reusable once the model is constructed for a
specific device structure. And if a single transmission spectrum
needs to be designed, evolutionary algorithms may be better
choices.

Recently, the integrated computational tool, which includes
evolutionary strategy and ANNs, has been proposed to design
photonic coupler devices [61]. The trained ANNs can be re-
garded as an alternative to the FDTD method or finite-element
method. Certainly, inverse design using the evolutionary algo-
rithms integrated with the ANN-based forward model is more
efficient and requires less computation time than directly using
the evolutionary algorithms. It should be noted that the train-
ing instances that are used to train the ANN-based forward
model also can be used to train the inverse design model.
We do not need to generate additional new training instances
for training the inverse design model. Once the ANN-based

inverse design model is constructed, we can obtain the struc-
ture parameters for many targeted transmission spectra quickly.
As a result, compared to the time-consuming model training of
the ANNs, the time advantage of the evolutionary algorithm
combined with ANN-based forward model is not very obvious.
Nevertheless, the integrated computational method, which uses
the ANN-based forward model to reduce the optimization time
of the evolutionary algorithm, is also an effective method to
design photonic devices.
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